
12. SOFTWARE METHODOLOGY

Abstract —The power dissipation of parallel 3-D mesh
refinement is highly dependent on the underlying algorithm and
the power-consuming features of the processing elements (PEs).
This contribution presents a practical methodology for modeling
and analyzing the power performance of parallel 3-D FEM mesh
refinement on CUDA/MPI architectures based on detailed
software prototypes and power parameters in order to predict
the power functionality and runtime behavior of the algorithm,
optimize the program design and thus achieve the best power
efficiency. We propose approaches for GPU parallelization,
dynamic CPU frequency scaling and dynamic load scheduling
among PEs. The performance improvements of our designs are
demonstrated and the results are validated on a real multi-core
and GPU cluster.

I. INTRODUCTION
The General Purpose Graphics Processing Unit (GPGPU)

provides new, evolving solutions in High Performance
Computing (HPC) by its massively parallel processing
architecture. However, the energy usage of GPU has been
continually increasing and high performance GPUs may
become the largest power consumers in a multiprocessing
system. A CUDA Processing Element (PE) is a hardware unit
comprised of a CPU and GPU that executes streams of CUDA
kernel instructions; several such PEs can be bus-connected
where each PE acts as a building block. Multi-core CPUs and
GPUs provide cooperative architectures in which both Single
Instruction Multiple Data (SIMD) and Single Program
Multiple Data (SPMD) programming models can co-exist and
complement each other. MPI works as the data distributing
mechanism between the GPU nodes and CUDA as the
computing engine. The CUDA/MPI model is becoming an
important choice in various HPC applications, however much
less research has been carried out to improve the power
performance with such heterogeneous parallel programming
paradigms. Towards power efficient computation on CPU-
GPU multi-processing computers, we investigate software
methodologies to optimize the power utilization through
algorithm design and programming technique.

Many algorithm level design methods have been studied
based on CPU platforms. A hardware-software approach
called “thrifty barrier” is introduced in [1] to save energy in
parallel applications that exhibit barrier synchronization
imbalance. In [2], a runtime system named “Adagio” is
introduced for complex scientific applications by combining
lessons learned from static energy-reducing CPU scheduling.
The fact that CPU and GPU computing elements are involved
inside one PE rather than only CPU does not change the nature
of power optimization problems, however the power saving
techniques of CPU machines have to be modified according to

the requirements of GPGPU architectures. The idea of our
algorithm design framework for saving HPC power by
software approach is illustrated in Fig.1, and we provide brief
introductions to the following modules in the figure:

A. PE Power Feature Determination
An algorithm restricts the behavior of a C/CUDA program

starting from high-level code to executables that run on a set
of computer components including multi-core CPU, GPU and
memories. The energy approximation is the summation of the
products of each component power and its execution time [3],
[4]. A large-scale SIMD program drives a processor running
same operations repeatedly in a streaming way. When the
processor’s frequency and temperature are invariables, and the
number of executions in one time unit is fixed, the power can
be modeled as a constant value. For a particular SIMD task,
the computation of energy consumption is only dependent on
the execution time. These power-consuming features are true
for each of the components in a CUDA PE. An overall power
model can be built up for the entire multiprocessing platform
based on them.

B. PE Computation Capability
Computation capability of a parallel processing component,

i.e., CPU and GPU is determined by its micro-architecture,
programming language and characteristics of the computation
performed on it [3], [4].

C. Algorithm and Code Optimization Strategies
The design of an algorithm has impacts on the amount of

computer resources and power consumption required for a

Power-Aware Parallel 3-D Finite Element Mesh Refinement Performance
Modeling and Analysis on CUDA/MPI Multi-core and GPU Architectures

Da Qi Ren1,2, Reiji Suda1,2 and Dennis D. Giannacopulos3
1Department of Computer Science, the University of Tokyo, Tokyo, 1130033, Japan, 2JST, CREST, Japan

3Department of Electrical and Computer Engineering, McGill University, Montreal, H3A 2A7, Canada

Email: dennis.giannacopoulos@mcgill.ca

Fig.1. The framework for power-aware algorithm optimization.

12. SOFTWARE METHODOLOGY

given computing problem. In our power-aware design,
algorithms and coding strategies are chosen based on the
power model and computation capabilities of the target
multiprocessing platform. Therefore, performance-tuning
approaches such as domain partitioning, load parallelization,
dynamic frequency scaling and workload scheduling are
considered in order to reach the best overall power efficiency.

D. Verification and Validation
Performance improvement needs to be validated by

comparing the results with the original design purpose, then
according to the improvement satisfaction to decide the
necessity of further refinement until the required power
performance is reached.

Based on above framework, the methodology introduced in
this paper imports hardware power parameters to software
algorithm study, then estimates power consumption with
CUDA/MPI program analysis. One of the advantages is that it
allows obtaining design characteristic values at the early
programming stage, thus benefiting programmers by providing
necessary environment information for choosing the best
power-efficient alternative.

II. RESULTS
 We have implemented three 3-D tetrahedral mesh refinement
programs to solve a resonant cavity problem with different
power aware design approaches each of which will be
elaborated in the long version paper: scale-down CPU
frequency; GPU device parallelization with and without
dynamic load-balancing. Performance and power efficiency
improvement by each program have been validated through
examining the measurement results on real CUDA/MPI
platform when 603,979,776 tetrahedral elements are produced,
as illustrated in Figs. 2-4. The CUDA PEs used in this work
comprise an Intel QX9650 CPU [5] and NVIDIA
8800GTS/512 GPU. The GPU has 16 MPs (multiprocessors)
and each MP has 8 SPs (streaming processors) [6].
In Fig. 2, we demonstrate the power efficiency enhancement

by CPU frequency scaling approach where one CPU and one
GPU have been used. When the CPU runs at 3GHz (left), the
average CPU load power is 59.0W higher than that at 2GHz
(right). GPU and memory power do not change when the CPU
frequency scales. The computation time when the CPU
frequency is 2GHz is increased by 0.16 seconds because the
speed of serial part of the code that is used for building up
graphical files is decreased. In total, using this approach has
saved 9% of the overall energy consumption.
 In addition to above CPU frequency scaling approach, GPU

device parallelization has been implemented with and without
load balancing functions, the measurement results are shown
in Fig.3 and Fig.4, respectively. In Fig. 3, the parallel
computation speedup is 5.3% (CPU on 2GHz) and 8.9% (CPU
on 3GHz) comparing with single GPU program in Fig.2. The
overall energy consumption is increased 39% (CPU on 2GHz)
and 27% (CPU on 3GHz) because one additional GPU is
involved in the computation, which brings additional power
cost. In Fig. 4, the new parallel computation speedup is 52.6%
(CPU on 2GHz) and 55.1% (CPU on 3GHz); and the overall

energy consumption is decreased 4.43% (CPU on 2GHz) and
5.35% (CPU on 3GHz) comparing with those of single GPU
program in Fig.2. This demonstrates that the load balancing
function is extremely important for GPU parallelization that
will significantly enhance the computation performance and
thus save the energy consumptions even when there is one
additional power consuming hardware involved
Full details of the tetrahedral mesh refinement used and the

power-aware algorithm design method inside one PE and
among the PEs of a cluster will be provided in the long
version paper. Also, the program architecture of CUDA/MPI
and the power feature abstraction from the measurement of
SIMD operations will be elaborated.

III. REFERENCES

[1] S. Ravi, et al., Proceedings of the 16th International Conference on
VLSI Design, pp. 431439, New Delhi, India, Jan 2003.

[2] B. Arts, et al., Proceedings of PATMOS 03, pp.197-207, 2003.
[3] D. Q. Ren, R. Suda, Proceedings of CSE’09, pp. 424-429, 2009.
[4] D. Q. Ren, R. Suda, Proceedings of PPAM 2009, 2009.
[5] Intel, Intel® 64 and IA-32 Architectures Software Developer's Manuals,

June 2010.
[6] NVIDIA, CUDA Programming Guide, Version 2.3.1, Aug 2009.

Fig.2. The resulting power charts of frequency scheduling approach on 3-D
mesh refinement: (left) CPU runs on 2GHz; (right) CPU runs on 3GHz.

Fig.3. The resulting power charts of parallel GPU on 3-D mesh refinement:
(left) CPU runs on 2GHz; (right) CPU runs on 3GHz.

Fig.4. The resulting power charts of parallel GPU with enhanced random
polling dynamic load balancing on 3-D mesh refinement: (lift) CPU runs on
2GHz; (right) CPU runs on 3GHz.

Fig.4 Parallel Matrix Multiplication on Multi CPU-GPU platform

