
12. SOFTWARE METHODOLOGY 

Abstract —The power dissipation of parallel 3-D mesh 
refinement is highly dependent on the underlying algorithm and 
the power-consuming features of the processing elements (PEs). 
This contribution presents a practical methodology for modeling 
and analyzing the power performance of parallel 3-D FEM mesh 
refinement on CUDA/MPI architectures based on detailed 
software prototypes and power parameters in order to predict 
the power functionality and runtime behavior of the algorithm, 
optimize the program design and thus achieve the best power 
efficiency. We propose approaches for GPU parallelization, 
dynamic CPU frequency scaling and dynamic load scheduling 
among PEs. The performance improvements of our designs are 
demonstrated and the results are validated on a real multi-core 
and GPU cluster. 

I. INTRODUCTION 
The General Purpose Graphics Processing Unit (GPGPU) 

provides new, evolving solutions in High Performance 
Computing (HPC) by its massively parallel processing 
architecture. However, the energy usage of GPU has been 
continually increasing and high performance GPUs may 
become the largest power consumers in a multiprocessing 
system. A CUDA Processing Element (PE) is a hardware unit 
comprised of a CPU and GPU that executes streams of CUDA 
kernel instructions; several such PEs can be bus-connected 
where each PE acts as a building block. Multi-core CPUs and 
GPUs provide cooperative architectures in which both Single 
Instruction Multiple Data (SIMD) and Single Program 
Multiple Data (SPMD) programming models can co-exist and 
complement each other. MPI works as the data distributing 
mechanism between the GPU nodes and CUDA as the 
computing engine. The CUDA/MPI model is becoming an 
important choice in various HPC applications, however much 
less research has been carried out to improve the power 
performance with such heterogeneous parallel programming 
paradigms. Towards power efficient computation on CPU-
GPU multi-processing computers, we investigate software 
methodologies to optimize the power utilization through 
algorithm design and programming technique. 

Many algorithm level design methods have been studied 
based on CPU platforms. A hardware-software approach 
called “thrifty barrier” is introduced in [1] to save energy in 
parallel applications that exhibit barrier synchronization 
imbalance. In [2], a runtime system named “Adagio” is 
introduced for complex scientific applications by combining 
lessons learned from static energy-reducing CPU scheduling. 
The fact that CPU and GPU computing elements are involved 
inside one PE rather than only CPU does not change the nature 
of power optimization problems, however the power saving 
techniques of CPU machines have to be modified according to 

the requirements of GPGPU architectures. The idea of our 
algorithm design framework for saving HPC power by 
software approach is illustrated in Fig.1, and we provide brief 
introductions to the following modules in the figure: 

A. PE Power Feature Determination 
An algorithm restricts the behavior of a C/CUDA program 

starting from high-level code to executables that run on a set 
of computer components including multi-core CPU, GPU and 
memories. The energy approximation is the summation of the 
products of each component power and its execution time [3], 
[4]. A large-scale SIMD program drives a processor running 
same operations repeatedly in a streaming way. When the 
processor’s frequency and temperature are invariables, and the 
number of executions in one time unit is fixed, the power can 
be modeled as a constant value. For a particular SIMD task, 
the computation of energy consumption is only dependent on 
the execution time. These power-consuming features are true 
for each of the components in a CUDA PE. An overall power 
model can be built up for the entire multiprocessing platform 
based on them. 

B.  PE Computation Capability 
Computation capability of a parallel processing component, 

i.e., CPU and GPU is determined by its micro-architecture, 
programming language and characteristics of the computation 
performed on it [3], [4].   

C. Algorithm and Code Optimization Strategies 
The design of an algorithm has impacts on the amount of 

computer resources and power consumption required for a 
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Fig.1. The framework for power-aware algorithm optimization. 
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given computing problem. In our power-aware design, 
algorithms and coding strategies are chosen based on the 
power model and computation capabilities of the target 
multiprocessing platform. Therefore, performance-tuning 
approaches such as domain partitioning, load parallelization, 
dynamic frequency scaling and workload scheduling are 
considered in order to reach the best overall power efficiency.   

D. Verification and Validation 
Performance improvement needs to be validated by 

comparing the results with the original design purpose, then 
according to the improvement satisfaction to decide the 
necessity of further refinement until the required power 
performance is reached.   

Based on above framework, the methodology introduced in 
this paper imports hardware power parameters to software 
algorithm study, then estimates power consumption with 
CUDA/MPI program analysis. One of the advantages is that it 
allows obtaining design characteristic values at the early 
programming stage, thus benefiting programmers by providing 
necessary environment information for choosing the best 
power-efficient alternative.  

II. RESULTS 
 We have implemented three 3-D tetrahedral mesh refinement 
programs to solve a resonant cavity problem with different 
power aware design approaches each of which will be 
elaborated in the long version paper: scale-down CPU 
frequency; GPU device parallelization with and without 
dynamic load-balancing. Performance and power efficiency 
improvement by each program have been validated through 
examining the measurement results on real CUDA/MPI 
platform when 603,979,776 tetrahedral elements are produced, 
as illustrated in Figs. 2-4. The CUDA PEs used in this work 
comprise an Intel QX9650 CPU [5] and NVIDIA 
8800GTS/512 GPU. The GPU has 16 MPs (multiprocessors) 
and each MP has 8 SPs (streaming processors) [6]. 
In Fig. 2, we demonstrate the power efficiency enhancement 

by CPU frequency scaling approach where one CPU and one 
GPU have been used. When the CPU runs at 3GHz (left), the 
average CPU load power is 59.0W higher than that at 2GHz 
(right). GPU and memory power do not change when the CPU 
frequency scales. The computation time when the CPU 
frequency is 2GHz is increased by 0.16 seconds because the 
speed of serial part of the code that is used for building up 
graphical files is decreased. In total, using this approach has 
saved 9% of the overall energy consumption.  
 In addition to above CPU frequency scaling approach, GPU 

device parallelization has been implemented with and without 
load balancing functions, the measurement results are shown 
in Fig.3 and Fig.4, respectively. In Fig. 3, the parallel 
computation speedup is 5.3% (CPU on 2GHz) and 8.9% (CPU 
on 3GHz) comparing with single GPU program in Fig.2. The 
overall energy consumption is increased 39% (CPU on 2GHz) 
and 27% (CPU on 3GHz) because one additional GPU is 
involved in the computation, which brings additional power 
cost. In Fig. 4, the new parallel computation speedup is 52.6% 
(CPU on 2GHz) and 55.1% (CPU on 3GHz); and the overall 

energy consumption is decreased 4.43% (CPU on 2GHz) and 
5.35% (CPU on 3GHz) comparing with those of single GPU 
program in Fig.2. This demonstrates that the load balancing 
function is extremely important for GPU parallelization that 
will significantly enhance the computation performance and 
thus save the energy consumptions even when there is one 
additional power consuming hardware involved 
Full details of the tetrahedral mesh refinement used and the 

power-aware algorithm design method inside one PE and 
among the PEs of a cluster will be provided in the long 
version paper. Also, the program architecture of CUDA/MPI 
and the power feature abstraction from the measurement of 
SIMD operations will be elaborated. 
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Fig.2. The resulting power charts of frequency scheduling approach on 3-D 
mesh refinement:  (left) CPU runs on 2GHz; (right) CPU runs on 3GHz. 
 

 

 
 

Fig.3. The resulting power charts of parallel GPU on 3-D mesh refinement:  
(left) CPU runs on 2GHz; (right) CPU runs on 3GHz.  
 
 

 
 

Fig.4. The resulting power charts of parallel GPU with enhanced random 
polling dynamic load balancing on 3-D mesh refinement:  (lift) CPU runs on 
2GHz; (right) CPU runs on 3GHz.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Parallel Matrix Multiplication on Multi CPU-GPU platform 


